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A variety of computerized learning platforms exist. In mathematics, most include sets of 
problems to complete. Feedback to users ranges from a single word like “Correct!” to offers of 
hints and partially- to fully-worked examples. Behind-the-scenes design of such systems also 
varies – from static dictionaries of problems to responsive programming that adapts assignments 
to users’ demonstrated skills within the computerized environment. This report presents 
background on digital learning contexts and early results of a mixed-methods study that included 
a cluster randomized controlled trial design. The study was in community college algebra 
classes where the intervention was a particular type of web-based activity and testing system.  
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Many students arrive in college underprepared for college level algebra, despite its 
importance for future success in mathematics (Long, Iatarola, & Conger, 2009; Porter & 
Polikoff, 2012). Web-based Activity and Testing Systems (WATS) are one approach to 
supporting equity and excellence in mathematics learning in colleges. When it comes to 
technology and algebra learning in college: What works? For whom? Under what conditions? 
These ubiquitous questions plague educational researchers who are assessing the whats, whys, 
and hows of a technology intervention or addition to a course. Did the instructors have enough 
support to adequately implement the technology tool? Were the online materials appropriate to 
provide sufficient practice for each students’ needs? Did instruction with the intervention 
equitably prepare students to pass the final exam?  

This report offers early results from a large project investigating relationships among student 
achievement and varying conditions of implementation for a web-based activity and testing 
system used in community college elementary algebra classes. Implementing a particular WATS 
constitutes the “treatment” condition in this cluster randomized controlled trial study. As 
described below, there are several ways to distinguish WATS tools. Some systems, like the one 
at the heart of our study, include adaptive problem sets, instructional videos, and data-driven 
tools for instructors to use to monitor and scaffold student learning.  

 
Research Questions 

Funded by the U.S. Department of Education, we are conducting a large-scale mixed 
methods study in over 30 community colleges. The study is driven by two research questions: 

 
Research Question 1: What is the impact of a particular WATS learning platform on students’ 

algebraic knowledge after instructors have implemented the platform for 
two semesters? 

Research Question 2: What challenges to use-as-intended (by developers) are faculty 
encountering and how are they responding to the challenges as they 
implement the WATS tool? 
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Background and Conceptual Framing 
There are distinctions among dynamic and static learning environments (see Table 1). 

Though the focus of this report is a particular dynamic system, we offer information on both to 
situate what that means. WATS learning environments can vary along at least two dimensions: 
(1) the extent to which they adaptively respond to student behavior and (2) the extent to which 
they are based on a careful cognitive model.  
  
Table 1. Conceptual framework of WATS environments based on adaptability and basis in a 
theory of learning. 
 Type of Adaptivity in Design 
 Static Dynamic 
Is a particular 
model of learning 
explicit in design 
and implementation 
(structure and 
processes)? 

No 
Text and tasks with 
instructional adaptation 
external to the materials  

Adaptive tutoring systems 
(e.g., ALEKS, Khan 
Academy, ActiveMath) 

Yes 
Textbook design and use 
driven by fidelity to an 
explicit theory of learning 

“Intelligent” tutoring 
systems (e.g., Cognitive 
Tutor) 

Static learning environments deliver content in a fixed order and contain scaffolds or 
feedback that are identical for all users. Although often informed by a learning theory, this type 
of system is distinguished from others in that it is not designed to immediately adapt to 
individual learning needs of users. An example of this type of environment might be online 
problem sets from a textbook that give immediate feedback to students such as “correct” or 
“incorrect.” Studies of college algebra student achievement and attitudes when instruction uses 
these tools in conjunction with face-to-face instruction (e.g., computer-based homework rather 
than paper-and-pencil homework) is mixed, generally indicating that use will do no harm but is 
not particularly beneficial (e.g., Bishop, 2010; Buzzetto-More & Ukoha, 2009; Hauk, Powers, & 
Segalla, 2015).  

Dynamic learning environments keep track of some user behaviors (e.g., errors, error rates, 
or time-on-problem) and use this information in a programmed decision tree that selects problem 
sets and/or feedback based on estimated mastery of specific skills. An example of an “adaptive” 
dynamic environment might be a system such as ALEKS or the “mastery challenge” approach 
now used in the online Khan Academy Mission structure. For example, in working on a 
particular skill (e.g., the distributive property) in the Algebra Mission, a behind-the-scenes data 
analyzer captures student performance on a “mastery challenge” set of items. Once a student gets 
six items in a row correct, the next level set of items in a programmed target learning trajectory 
is offered. Depending on the number and type of items the particular user answers incorrectly 
(e.g., on the path to six items in a row done correctly), the analyzer program identifies target 
content and assembles the next “mastery challenge” set of items. Some studies have found 
correlations between adaptive-dynamic systems and student learning (e.g., Murphy et al. 2014). 
However, other than our own, we are unaware of any large-scale experimental studies assessing 
the efficacy of adaptive-dynamic systems in college mathematics.  

Above and beyond responsive assignment generation, programming in a “cognitively-based” 
dynamic environment is informed by a theoretical model that asserts the cognitive processing 
necessary for acquiring skills (Anderson et al. 1995; Koedinger & Corbett, 2006). For instance, 
instead of specifying only that graphing is important and should be practiced, a cognitively-based 
environment also will specify the student thinking and skills needed to comprehend graphing 
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(e.g., connecting spatial and verbal information), and provide feedback and scaffolds that support 
these cognitive processes (e.g., visuo-spatial feedback and graphics that are integrated with text). 
In cognitively-based environments, scaffolds themselves can also be adaptive. For example, 
more scaffolding through examples can be provided early in learning and scaffolding can fade as 
a student acquires expertise (Ritter et al., 2007). Like other dynamic systems, cognitively-based 
systems can also provide summaries of student progress, which better enable teachers to support 
struggling students. The efficacy of early computer versions of such an approach has been 
documented in some large-scale studies in high school and college settings (Koedinger & 
Sueker, 1996; Koedinger et al., 1997). However, no fully tested cognitively-based web-based 
activity and testing system currently exists for college students learning algebra.  

As mentioned, several adaptive dynamic systems do exist (e.g., ALEKS, Khan Academy 
“Missions”). The particular WATS investigated in our study is accessed on the internet and is 
designed primarily for use as replacement for some in-class individual seatwork and some 
homework. Note: We report here on data collected from the first of two years of study. The 
second year of the study – which repeats the design of the first – is currently underway. Hence, 
we purposefully under-report some details. 

 
Methods 

 
The study we report here uses a mixed methods approach that combines a multi-site cluster 

randomized trial with an exploration of instructor and student experiences. Half of instructors at 
each community college site were assigned to use a particular WATS in their instruction 
(treatment condition), the other half taught as they usually would, barring the use of the 
Treatment WATS tool though other WATS might be used (control condition). Faculty 
participated for two semesters in order to allow instructors to familiarize themselves with 
implementing the WATS with their local algebra curriculum. Specifically, the first term in Fall 
was a “practice” semester to field-test the intervention and the second semester of the same 
academic year was the “efficacy” study from which data were analyzed. 

 
Sampling Strategy !

Rather than recruit a sample by convenience, which is likely to result in poor generalizability, 
we utilized a stratified sampling approach developed by Tipton (2014). This method is a way of 
recruiting a sample that is compositionally similar to the target population for which the results 
of the study are meant to generalize. The target population for this study was defined as students 
at all community colleges in semester-long elementary algebra courses (also known as 
“developmental” or “beginning” algebra, the equivalent of a first year of algebra), in the U.S. 
state where the study took place. This population was selected in part because the state is large 
and diverse, and in part because we sought to decrease variability that may result from differing 
high school mathematics standards and graduation requirements across multiple states. 

To recruit a sample that was compositionally similar to the target population, we first created 
a database that included information about all eligible community college sites (more than 100 
across the state). We included information on college-level characteristics that existing research 
suggests will correlate with the study outcome (e.g., the average age of students at the college, 
the proportion of adjunct faculty, the proportion of students enrolled in remedial math courses). 
We conducted a cluster analysis on these potential covariates with all of the eligible colleges. 
The analysis resulted in a five-cluster solution that explained 29% of the variance between 
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colleges. Examination of the characteristics that were unique to each cluster yielded the 
following descriptive observations:!

Cluster 1. Represented 25% of colleges. These are colleges with a total student enrollment 
near the average (across all community colleges in the state) whose students tend to take 
more credits in the evening relative to colleges in other clusters. Cluster 1 colleges have 
more Temporary Faculty, and more Hispanic students, African American students, and 
students over 40 years old. 

Cluster 2. Represented 15% of colleges. These colleges serve primarily students aged 25 and 
above who take fewer credits and more commonly are evening students. 

Cluster 3. Represented 22% of colleges. These are colleges with a total student enrollment 
near the state average where students are more commonly Asian, younger, and enrolled 
full time during the day. 

Cluster 4. Represented 23% of colleges. Cluster 4 represents smaller colleges that have a 
higher proportion of white students that tend to be younger, mostly full-time, and take 
fewer evening courses. 

Cluster 5. Represented 15% of colleges. These are larger colleges that have more Hispanic 
and younger students. Students tend to take more daytime courses, with more fulltime 
loads and many remedial mathematics courses and high remedial math enrollment. 
 

Our recruitment efforts aimed to include a proportionate number of colleges within each of 
the five clusters. Recruitment for the first cohort of participants yielded a study sample of 
colleges similar to the overall distribution across clusters that was the target for the sample. Due 
to attrition (instructors leaving the study), the representation shifted away from the target slightly 
for Clusters 1 and 4 by the end of the second term (see Figure 1). 

!

 
Figure 1. Recruited, target, and end of spring sample proportions across clusters. 

 
Sample for this Report 

Initial enrollment in the study included 89 instructors across 38 college sites. Attrition of 
instructors from initial enrollment to the end of the spring efficacy data semester was significant 
(68%). For this report, we analyzed the data from 510 students of 29 instructors across 18 
colleges. Student and instructor numbers related to the data reported on here are shown in Table 
2 and characteristics of the teachers and colleges are presented in Table 3.!
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Table 2. Counts of Instructors, Students, and Colleges in the Study. 
Condition Instructors Students Colleges* 
Control 17 328 13 

Treatment 12 182 11 
Total 29 510 18 

* Note: there were multiple instructors at some colleges. 
 
Table 3. Descriptive statistics for the student and instructor populations across the colleges in the 

study, by condition. 

  
Treatment Control 

M SD M SD 
Student Characteristics 

Enrollment 26,520 10,240 25,300 18,200 
U.S. Citizens 0.88 0.05 0.88 0.12 

Math Basic Retention* 0.80 0.03 0.82 0.06 
African American 0.04 0.03 0.06 0.03 

Asian 0.11 0.07 0.15 0.14 
Hispanic 0.49 0.21 0.41 0.19 

Native American 0.00 0.00 0.01 0.02 
White 0.27 0.17 0.30 0.16 

Below 25 0.61 0.05 0.58 0.07 
25 and Above 0.39 0.02 0.42 0.03 
Day Students 0.76 0.04 0.72 0.11 

Evening Students 0.18 0.04 0.16 0.04 
  Instructor Characteristics 

Part Time Faculty 0.45 NA 0.33 NA 
Years Experience Teaching Math 15.78 8.86 15.54 6.59 
Semesters of Algebra Teaching 18.60 11.99 15.36 13.82 

* Proportion retention in remedial mathematics courses 
 
Measures!

A great deal of textual, observational, and interview data were gathered last year and will be 
gathered again for the second iteration of the study. These data allow analysis of impact 
(Research Question 1) and careful analysis of the intended and actual use of the learning 
environment and the classroom contexts in which it is enacted – an examination of 
implementation structures and processes (Research Question 2). Indices of specific and generic 
fidelity derived from this work also will play a role in HLM generation and interpretation in the 
coming year. The instruments are summarized below. With the exception of the observation and 
interview tools, all measures were administered online. 
Instructor Instruments 

Technology and Teaching Survey. This survey measures teachers’ self-reported ability to 
use technology for teaching.  

Perspectives Survey. This survey consists of questions related to teachers’ background 

Pr
op
or
tio
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)
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(e.g., years of experience teaching algebra, demographic information) as well as their 
attitudes and perspectives about teaching.  

Measures of Effective Teaching – Algebra Test. This test was developed, piloted, and 
validated by the Educational Testing Service as part of the Measures of Effective 
Teaching (MET) project. It assesses instructors’ pedagogical content knowledge in 
developmental algebra. 

Weekly Instructor Logs. After extensive pilot testing, weekly logs were developed that ask 
about course format, topics, and resources used for that week’s instruction.  

Observation & Interview. The observation protocol captures a variety of information, 
including frequency of mention of WATS use, work completed in a WATS (treatment 
or other), teacher in-class use of WATS tools, as well as amount of time spent in 
whole class, group, and individual work. The interview focus is on the successes and 
challenges teachers face in using a WATS as part of instruction. 

Student Instruments 
Mathematics Diagnostic Testing Project (MDTP) Assessment. The MDTP serves as the 

study’s primary student outcome measure. The Algebra Readiness form is the pre-test 
administered at the start of the semester and the Elementary Algebra form is the end-
of-semester post-test. The MDTP tests have been shown to be valid and reliable 
measures of students’ algebraic understanding (Gerachis & Manaster, 1995). 

Student Background Questionnaire. This survey asks students about academic and 
demographic information such as academic history in mathematics, eligibility for 
financial aide 

Motivated Strategies for Learning Questionnaire (MSLQ). This questionnaire measures 
students’ motivation and attitudes towards mathematics.  

Student Evaluation of Teaching Survey. The evaluation survey asks students to assess their 
experience in the course using Likert-scale questions.  

 
The way performance is calculated is a non-trivial issue in educational measurement. One 

way to estimate student achievement on the MDTP tests is to calculate the raw percentage 
correct (i.e., summing the number of correct scores, and dividing by the total possible score). 
However, such a calculation does not take into consideration other parameters of interest, such as 
item difficulty, that provide added information that can be used to estimate student ability. To 
address this issue, we used a multilevel extension of the two-parameter logistic item response 
theory model to compute student pre- and post-test scale scores (Birnbaum, 1968). Specifically, 
we computed response-pattern expected a posteriori estimates (EAP scores; Thissen & Orlando, 
2001) for each student. Similarly, we created EAP average scores for each classroom (a teacher-
level score). We used individual and classroom aggregate student EAP scores in the analytic 
model described below.!
 

Results 
 

Quantitative Analysis 
The study employed Hierarchical Linear Modeling (HLM), controlling for students’ pretest 

MDTP EAP scores, to estimate the impact of WATS use on student achievement. The 
hierarchical modeling approach accounts for the nested structure of the sample (Raudenbush & 
Bryk, 2002), specifically the nesting of students within instructors. Preliminary analysis revealed 
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that the HLM choice was justified, as the intra-class correlation in the unconditional model was 
0.36, suggesting that the observations were not independent (i.e., student scores varied based on 
their classroom – statistically, the teacher mattered – so other approaches, such as single-level 
regression, would be inappropriate). The specific HLM model we used: 
 
!"# = %&& + %&((*+,-)# + %(&(-/0123)"# + %&4(567/208/92123)# + :&; + <=&!!!!(Equation A)!
!
In the equation above, )

!"# is the MDTP post-test EAP score for the i-th student of the j-th instructor; 
 %&& is the grand mean of EAP scores across all students;  
(*+,-)# is a dichotomous variable indicating instructor assignment to use the particular 

treatment WATS or not; 
 %(&(-/0123)"# is the student MDTP pre-test EAP score; 
 %&4(567/208/92123)# is the MDTP pre-test EAP estimate for all students in the class of 

instructor j;  
:&; and >=& represent a random effect term for instructors and a random error term, 

respectively.  
All covariates were grand-mean centered to achieve the desired model interpretation (i.e., 
covariates were transformed to be centered on a mean of zero). Importantly, the impact of the 
treatment WATS use is captured by %&(. 
 

Baseline equivalence."The What Works Clearinghouse (2014) considers baseline differences 
with a Hedges g < .25 to be within the range of statistical correction. However, differences of 
Hedges g > .25 are considered not amenable to statistical correction. As can be seen in Table 4, 
both situations occurred. The differences between Instructor mean EAP scores (i.e., classroom 
average) and student pre-test raw scores were moderate between the two conditions. However, 
the difference between student pre-test EAP scores was substantive across conditions (g = 0.30). 
The EAP pretest difference for students is large enough that the analytic sample might be 
considered non-equivalent at baseline on this variable (below, we discuss details that attempt to 
address this difference)."

 
Table 4. Baseline equivalence analysis on the analytic sample.!

 !  Effect Size 
Hedges g!

WATS! Control!

M! SD! M! SD!

Student Pre 
(Raw Scores)! 0.25! 30.58! 8.27! 28.54! 7.82!

Student Pre 
(EAP Scores) ! 0.30! 0.45! 1.10! 0.14! 0.99!

Instructor Pre 
(EAP Scores)! 0.08! 0.22! 0.53! 0.18! 0.39!

!
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Intervention impact. The aim of the impact analysis was to address the question: After 
controlling for student and classroom-level average pre-test scores, what is the impact of the 
WATS intervention on students’ elementary algebra knowledge, as measured by the MDTP? To 
address this question, we use Equation A to estimate the average impact of going from the 
control to the treatment condition. Ideally, what we are interested in is this: what would a control 
students’ algebra achievement be if his/her instructor, in an alternative universe, were assigned to 
the treatment group? Because students cannot participate to both conditions simultaneously, our 
randomized trial is a proxy for this counterfactual scenario. The results of random and fixed 
effects in the model are presented in Tables 5 and 6, respectively. 

The random effects (Table 5), tell us that the amount of variance that the instructor-level 
accounts for (i.e., the intraclass correlation) is about 28% (from Table 5 and a quick calculation, 
we see instructor variance divided by the total variance = 0.16/(0.40+0.16)=0.28). This means 
that student level values are not independent. Put another way, students within classrooms were 
more similar to each other than students between classrooms. The intraclass correlation justifies 
our hierarchical analytic approach over single level regression. More generally (and in future 
work), we want to look at what instructors are doing to see how the instructor-level activity is 
shaping student achievement. The fixed effect model estimates are provided in Table 6. 
Controlling for students’ pretest EAP scores, we found that using this particular WATS platform 
corresponded to a 0.35 increase in students’ post-test EAP scores. This difference is considered a 
statistically significant positive effect (p < .05). The Hedges g value for this effect is 0.32, which 
is judged to be substantively important for educational research studies of this type (WWC, 
2014). The 95% confidence interval around the effect estimate was 0.14 - 0.50, which is large, 
but spans an exclusively positive range. 

 
Table 5. Random effects of the model. 
 

! Variance ! Standard Deviation!
Instructor :&; ! 0.16! 0.40!

Level-1 Error >=&! 0.40! 0.63!
 
 

Table 6. Fixed effect results of the model.  
 

! Estimate! St. Error! p-value!
Intercept %&& ! -0.10! 0.10! 0.34!
WATS %&( ! 0.35! 0.16! 0.04!

StudentPre %(&! 0.73! 0.03! < .001!
InstructorPre %&4 ! 0.30! 0.19! 0.13!

!

Using raw MDTP scores (instead of EAP estimates) as outcomes and covariates in the 
model, we obtained similar results. In the raw score model, the impact of WATS was estimated 
to result, on average, in a 2.57 point increase in student raw score. This was a statistically 
significant positive effect (p = 0.04, SE = 1.18, Hedges g = 0.32). The control group mean was 
estimated at 22.04 (out of 50 points), thus, the 2.57 point difference corresponds to nearly 12 
percentage points increase in post-test scores relative to the control group (2.57 / 22.04 * 100 = 
11.66). Since baseline differences between treatment and control group student raw scores were 
within the range of statistical correction, the similarity between the two models (raw score and 
EAP score models) is important, providing more confidence in the estimates of positive impact.!
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The effect size across both analyses was estimated at 0.32. This result can be interpreted as 
the WATS group of students would have scored an estimated 0.32 standard deviations higher, on 
average, than the control group of students on the MDTP, had the groups been fully equivalent 
prior to the intervention. However, to interpret the effect size of 0.32 in a more meaningful way, 
we converted the effect size using properties of the normal distribution. In a normed sample, a 
one standard deviation increase from the middle of the distribution corresponds to a 34 percentile 
point increase in scores. Thus, an effect size of .32 would correspond to an approximate 11 
percentile point increase in scores (i.e., .32 * 34 = 10.88). Therefore, if students in the control 
condition perform at the 50th percentile in a normed sample, the students in the WATS condition 
would perform at the 61st percentile in the normed sample (50 + 10.88 = 60.88).!

While these results suggest that WATS has a positive impact on students’ elementary algebra 
achievement, it is important to note that this study suffered from high instructor attrition. This 
fact, coupled with moderate to large baseline differences at pretest, warrant caution in 
interpreting the results. In order to determine whether the results of the present study are robust, 
we are repeating the study with a second cohort of instructors and their students in the 2016-17 
school year. Pooling the results of these two studies will help to determine the extent to which 
the findings replicate with different samples and will lend more confidence in the study 
conclusions (Cheung & Slavin, 2015). !
 
Qualitative Analysis 

As in many curricular projects, developers of the WATS in our study paid attention to 
learning theory in determining the content in the web-based system, but the same was not true 
for determining implementation processes and structures. The pragmatic details of large-scale 
classroom use were under-specified. Developers articulated their assumptions about what 
students learned as they completed activities, but the roles of specific components, including the 
instructor role in the mediation of learning, were not clearly defined. Thus, there was an under-
determined “it” to which developers expected implementers (instructors and students) to be 
faithful. 

Fidelity of implementation is the degree to which an intervention or program is delivered as 
intended (Dusenbury, Brannigan, Falco, & Hansen, 2003). Do implementers understand the 
trade-offs in the daily decisions they must make “in the wild” and the short and long-term 
consequences on student learning as a result of compromises in fidelity? As Munter and 
colleagues (2014) have pointed out, there is no agreement on how to assess fidelity of 
implementation. However, there is a growing consensus on a component-based approach to 
measuring its structure and processes (Century & Cassata, 2014).  Century and Cassata’s 
summary of research offers five components to consider in fidelity of implementation: 
Diagnostic, Procedural, Educative, Pedagogical, and Student Engagement (Table 7, next page).   

The components in Table 7 are operationalized through a rubric, a guide for collecting and 
reporting data in our implementation study. A rubric articulates the expectations for a category 
by listing the criteria, or what counts, and describes the levels of quality from low to high.  

Each component has several factors that define the component. The research team has 
developed a rubric for fidelity of implementation that identifies measurable attributes for each 
component (for example, see Table 8 on the next page for some detail on the “educative” 
component). Data for assessing each row come from the survey, observation, and interview 
measures described earlier. 
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Table 7. Components and Focus in a Fidelity of Implementation Study. 

Components Focus 
Diagnostic These factors say what the “it” is that is being implemented (e.g., what 

makes this particular WATS distinct from other activities). 

Structural-Procedural 
 

These components tell the user (in this case, the instructor) what to do 
(e.g., assign intervention x times/week, y minutes/use). These are aspects 
of the expected curriculum. 

Structural-Educative These state the developers’ expectations for what the user needs to know 
relative to the intervention (e.g., types of technological, content, and 
pedagogical knowledge needed by an instructor). 

Interaction-Pedagogical 
 

These capture the actions, behaviors, and interactions users are expected 
to engage in when using the intervention (e.g., intervention is at least x 
% of assignments, counts for at least y % of student grade). These are 
aspects of the intended curriculum. 

Interaction-Engagement  These components delineate the actions, behaviors, and interactions that 
students are expected to engage in for successful implementation. These 
are aspects of the achieved curriculum. 

 

Table 8. Example Rubric Descriptors for Levels of Fidelity, Structural-Educative Component. 

Educative: These components state the developers’ expectations for what the user (instructor) 
needs to know relative to the intervention. 

 High Level of Fidelity Moderate Fidelity Low Level of Fidelity 
Users’ 
proficiency in 
math content  

Instructor is proficient to 
highly proficient in the 
subject matter.  

Instructor has some gaps 
in proficiency in the 
subject matter.  

Instructor does not have 
basic knowledge and/or 
skills in the subject area.  

Users’ 
proficiency in 
content (CK), 
pedagogical 
(PK), and 
technological 
knowledge 
(TK) 

Instructor regularly 
integrates content, 
pedagogical, and 
technological 
knowledge (TK) in 
classroom instruction. 
Communicates with 
students through WATS. 

Instructor struggles to 
integrate CK, PK, and 
TK in instruction. 
Occasionally sends 
digital messages to 
students using WATS 
tools.  

Instructor CK, PK, 
and/or TK sparse or 
applied in a haphazard 
manner in classroom 
instruction. Rarely uses 
WATS tools to 
communicate with 
students.  

Users’ 
knowledge of 
philosophy 
behind the 
intervention 

Instructor understands 
philosophy of WATS 
resources (practice 
items, "mastery 
mechanics," analytics, 
and coaching tools),  

Instructor is aware of it, 
but understanding of the 
philosophy of WATS 
tool has some gaps.  

Instructor is not aware 
of or does not 
understand philosophy 
of WATS resources.  

Users’ 
knowledge of 
requirements 
of the 
intervention* 

Instructor understands  
the purpose, procedures, 
and/or the desired 
outcomes of the project 
(i.e., "mastery") 

Instructor understanding 
has some gaps (e.g., 
may know purpose, but 
not all procedures, or 
desired outcomes).  

Instructor does not 
understand the purpose, 
procedures, and/or 
desired outcomes. 
Problems are typical.  

* Note: Disagreeing is okay, this is about instructor knowledge of it. 
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Defining and Refining Measures for the Fidelity of Implementation Rubric 
The ultimate purpose of a fidelity of implementation rubric is to unpack and articulate the 

conditions of implementation and the relationship between those conditions and impact on 
student achievement. In addition to allowing identification of alignment between developer 
expectations and classroom enactment, an examination of implementation provides the 
opportunity to discover where productive adaptations may be made by instructors, adaptations 
that boost student achievement beyond that associated with an implementation faithful to the 
developers’ view.  

In using the rubric, we assign a number to each level of fidelity for each teacher across the 
year of data collection. This can be as simple as the approach shown in Table 8, a 3 for a high 
level of fidelity, 2 for a moderate level of fidelity, or a 1 for a low level. The general score for a 
teacher-level index of implementation fidelity will be the total number of points assigned in 
completing the rubric as a ratio of the total possible. At a more detailed level, once we have 
completed rubric analysis to create the row by row scores for each instructor, these scores will be 
used as a vector of values in statistical modeling of the impact of the intervention as part of a 
“specific fidelity index” (Hulleman & Cordray, 2009).  

We are at the beginning of addressing Research Question 2: What challenges to use-as-
intended (by developers) are faculty encountering and how are they responding to the challenges 
as they implement the WATS tool? To date, analysis of observations, interviews, and weekly 
logs has provided the opportunity to discover instructional orientations. Several orientations are 
emerging from analysis now and include a “denial” orientation in which instructors see the 
WATS as no different from themselves as a teacher, a “polarized” orientation where an 
instructor is either indifferent (no/low expectations for success) or enthusiastic (high/excessive 
expectations for success) about the power of student engagement with the WATS, a “cautious 
optimism” in which the instructor sees the WATS as one tool in a collection of resources to be 
used strategically in designing instruction, or an “adaptation” orientation in the sense that the 
instructor sees the WATS as a resource for which appropriate instructional use is negotiated with 
and through the students’ goals for interaction with the software in the context of the algebra 
course. In addition to the fidelity scoring of alignment between developer expectations and 
classroom enactment, these orientations may serve to explain the relationship between 
implementation and impact, getting at how and for whom WATS are most effective. 

 
Next Steps 

 
As indicated above, we will continue this study with a second cohort of new participants in 

the 2016-2017 academic year. Our specific objectives in the coming six months are to complete 
the second cohort’s efficacy semester, generate fidelity indices for each instructor in each 
cohort, and complete separate and collective statistical modeling explorations. 

Implications for practice. Though the study is ongoing, the early results might be considered 
promising. If the question is: Should I use a WATS? The answer is: It depends. Taking into 
account the potentially biased statistical impact results to date and the exploration of variation 
in instructor implementation, it appears likely that an orientation of “cautious optimism” or 
“adaptation” may be required for a dynamic WATS tool like the one in the study to have 
significant impact on student learning.   

Implications for research. A mixed-methods study like the one reported here is large and 
complex. We note here that there were significant challenges in recruiting and retaining 
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community college mathematics faculty for the project. To build community and assist in future 
research efforts in two-year colleges (and as part of our dissemination about the work) we have 
targeted outlets read by community college faculty (e.g., MathAMATYC Educator – a journal 
of the American Mathematical Association of Two Year Colleges). It is important for 
practitioners and potential participants in studies on research in undergraduate mathematics 
education to be aware of research and the enormous contributions they can make to it. 
Secondly, a major implication for research (for us) was the work in managing all the data 
generated by the project. The reader is encouraged to review the piece by our colleague Aleata 
Hubbard that also was presented at the conference, Data Cleaning in Mathematics Education 
Research: The Overlooked Methodological Step. 
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